Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Arch. cardiol. Méx ; 86(3): 260-270, jul.-sep. 2016. tab, graf
Article in Spanish | LILACS | ID: biblio-838383

ABSTRACT

Resumen Objetivo Tras las evidencias acumuladas mediante el uso de técnicas de angioplastia con stents, surge la polémica sobre los factores que inciden en la respuesta final, ya que hay estudios que reportan reestenosis de la luz en el 30-40% alrededor de 6 meses luego de ser implantados, vinculándose como una de las causas al diseño del dispositivo. Este artículo propone la caracterización funcional de stents endovasculares, analizando su influencia mecánica en el sistema vascular y prediciendo los factores de trauma implícitos en el lecho de los vasos. Métodos Utilizando modelos computacionales de prótesis endovasculares tipo stents, mediante técnicas Finite Elements Analysis, se procedió al análisis estructural de dichos dispositivos con el fin de predecir el comportamiento mecánico y el trauma vascular. Para ello, las prótesis fueron consideradas estructuras tubulares compuestas por múltiples eslabones que están sometidos a cargas de presión, que se reflejan como concentradores de esfuerzos. Resultados El estudio permitió visualizar cómo se ajusta la geometría del stent a las diferentes cargas, obteniéndose una aproximación a la respuesta de interacción "sólido-sólido" entre el stent y la pared arterial. Así, se caracterizó el patrón de esfuerzos y se planteó un modelo conceptual que explica su incidencia mecánica en la interacción stent-vaso, para inferir en la funcionalidad del diseño del dispositivo. Conclusiones El modelo conceptual planteado permite determinar la relación entre las condiciones de interacción mecánicas del stent, y advierte sobre los efectos en lo que sería la operación del dispositivo en el ambiente vascular.


Abstract Objective The accumulated evidence on angioplasty techniques with stents has raised a controversy about the factors that influence the final vascular response. Indeed, several studies have shown there might be re-stenosis between 30% to 40% about 6 months after placement, relating to the design of the device as one of the main causes. This paper proposes the functional characterization of endovascular stents, analyzing its mechanical influence in the vascular system and predicting implicit traumatic factors in the vessel. Methods A structural analysis was made for several computational models of endovascular stents using Finite Element Analysis in order to predict the mechanical behavior and the vascular trauma. In this way, the stents were considered as tubular devices composed of multiple links under radial pressure loads, reflecting stress concentration effects. Results The analysis allowed to visualize how the geometry of stents is adjusted under several load conditions, in order to obtain the response of "solid-solid" interaction between the stent and the arterial wall. Thus, an analysis was performed in order to calculate stress, and a conceptual model that explains its mechanical impact on the stent-vessel interaction, was raised, to infer on the functionality from the design of the devices. Conclusions The proposed conceptual model allows to determine the relationship between the conditions of mechanical interaction of the stents, and warns about the effects in what would be the operation of the device on the vascular environment.


Subject(s)
Humans , Blood Vessels/injuries , Stents/adverse effects , Finite Element Analysis , Models, Cardiovascular , Biomechanical Phenomena
2.
Arch. cardiol. Méx ; 82(4): 265-272, oct.-dic. 2012. ilus
Article in Spanish | LILACS | ID: lil-695059

ABSTRACT

Objetivo: Tras las evidencias acumuladas con el uso de dispositivos de asistencia circulatoria de flujo pulsante y continuo, surge la polémica sobre los efectos del tipo de flujo en el sistema circulatorio. Este artículo propone la caracterización del flujo pulsante en conductos elásticos, para analizar la influencia de la pulsación en el sistema y entender las peculiaridades del flujo en el lecho vascular. Métodos: Utilizando un dispositivo de bombeo tipo saco elástico de accionamiento neumático, se procedió a la observación visual e instrumental del flujo a través de conductos tanto flexibles (vaso venoso bovino) como rígidos (tubo plástico), y se analizaron las características biomecánicas de la pulsación en ambos. Resultados: Basado en la observación experimental y el análisis biomecánico del flujo pulsante en un conducto elástico, se caracterizó el patrón de la pulsación y se planteó un modelo que explica la influencia de la pulsación en el sistema vascular y los efectos de su ausencia. El modelo propuesto incluye la condición general de flujo (componente mecánico) y su aplicación al sistema vascular (componente fisiológico). Conclusiones: El modelo planteado permite determinar la relación entre las condiciones del flujo y la reacción de la pared, así como unificar la interpretación de factores fluido-dinámicos involucrados a la vez, que advierte sobre los efectos del cambio de flujo y su significado en lo que sería la operación de dispositivos de asistencia circulatoria.


Objective: The evidence accumulated on the use of pulsatile and non-pulsatile flow-dependent devices raises a controversy concerning the effects of the flow type on the Circulatory system. This paper proposes to characterize the properties of pulsatile flow in elastic conduits in order to determine how the pulse affects the system and to determine the specific details of the flow in the vascular bed. Methods: The biomechanical properties of pulsatile flow were measured on flexible (calf venous vessel), and rigid (plastic pipe) conduits in which the flow was implemented using a pneumatic elastic sack-like pumping device. Results: The experimental data and the biomechanical analysis of the pulsing flow was used to determine the flow pattern in order to develop a mechanical model explaining the effects of the pulse on the vascular system. The resulting model includes the flow's general condition (mechanical component) and its effects on the vascular system (biological/physiological component). Conclusions: The model proposed here allows determining the relationship between the flow conditions and the reaction on the wall; it also allows unifying the interpretation of fluid-dynamic factors affecting these phenomena and represents a warning system about the effects of flow changes on the operation of circulatory assistance devices.


Subject(s)
Models, Anatomic , Models, Cardiovascular , Pulsatile Flow/physiology
SELECTION OF CITATIONS
SEARCH DETAIL